
 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 21, August 2017

160

All Rights Reserved © 2017 IJARTET

A COMPARISON STUDY ON VARIOUS

HEURISTIC SEARCH TECHNIQUES

M.Ganesh Babu
1
, Homer Benny Bandela

2
, DonavalliVenkataVidya Deepthi

3

1. Assistant Professor, Dept. of C.S.E, Sir C.R.Reddy College of Engineering, Eluru, Andhra Pradesh, India.

2. Assistant Professor, Dept. of C.S.E, Sir C.R. Reddy College of Engineering, Eluru, Andhra Pradesh, India.

3. Assistant Professor, Dept. of C.S.E, Sir C.R. Reddy College of Engineering, Eluru, Andhra Pradesh, India.

---*---

ABSTRACT

There are various algorithm are used for different

purpose and were observed in their optimality and

simplicity with speed. Heuristic search techniques

make use of problem specific knowledge to find

efficient solutions. Most of these techniques

determine the next best possible state leading towards

the goal state by using evaluation function. This

paper shows the practical performance of the

different heuristic algorithm. While implementing

these algorithms, this analysis helps in choosing the

algorithm which effects the performance of

algorithms significantly.

Keywords: Informed search techniques, Heuristic

function, Heuristic algorithm.

1.INTRODUCTION

Heuristic search algorithms have exponential time

and space complexities as they store complete

information of the path including the explored

intermediate nodes. Hence many applications

involving heuristic search techniquesto find optimal

solutions tend to be expensive. Despite of these, the

researchers have strived to find optimal solution in

best possible time. In this paper we have considered

major algorithms which are applied to find the

shortest path: hill – climbing, steepest –ascent, best

first and A* [1,2,4].

Hill climbing algorithms expand the most promising

descendant of the most recently expanded node until

they encounter the solution. Steepest – ascent hill

climbing differs from hill climbing algorithm only

the way in which the next node is selected. In this

method it selects best successor node for expansion,

unlike the first successor node for expansion, as done

in hill climbing. Though this method tries to choose

best possible path , but this method , like hill

climbing method may fail to find a solution by

reaching to a node from were no improvements can

be done [5,8]. Best first search method selects the

“best” node for further expansion by applying a

heuristic function. It then generates the successor

node in similar fashion till the goal node is reached.

This technique tries to explore the advantages of

breadth first and depth first search technique and

provides better time bound solution. Best first

algorithm involves OR graph, it avoids the node

duplication and also works on the assumption that

each node has parent link to give the best node from

the node where it is derived and link to successors.

A* algorithm is a slight modified version of best

search algorithm. The difference is that in A* the

estimate to the goal state is given by heuristic

function and also it makes use of the cost of the path

developed [2,3,6].

We will now discuss each of these methods for

finding the shortest path.

2.HILL CLIMBING METHOD FOR SHORTEST

PATH FINDING

Hill climbing algorithm expands one node at a time

beginning with the initial node. Each time it expands

only the best node reachable from current node. Thus

this method does not involve complex computation

and due to this reason cannot ensure the

completeness of the solution. Hill climbing method

does not give a solution as may terminate without

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 21, August 2017

161

All Rights Reserved © 2017 IJARTET

reaching the goal state [12].Now let us look at

algorithm of hill climbing for finding shortest path:

Procedure for hill climbing algorithm to find the

shortest path:

hill_climb (I, F, Q)

{

// I& F are start and goal nodes respectively.

// Q is queue which stores the successor

// nodes.

// let curr_node indicate current working

// node.

// path _cost gives the cost of the path.

initialiseQ; curr_node = I; path_cost=0; while (1)

{

if (curr_node is goal node) then terminate the process

with SUCCESS;

else

{

find successor node of curr_node;

addthis node in Q ;

}

if(Q is empty)then

terminate the process with FAILURE;

else

{

temp_node = first node of Q ;

path_cost = path_cost +

edge_cost [curr_node][temp_node];

curr_node = temp_node;

delete first node from Q ;

}

}

One may notice that there can be failure state when

algorithm may fail to reach the goal node. This will

happen especially when the processing has reached to

a node from where no new best

nodes are available for further expansion. This will

happen especially when the processing has reached to

a node from where no new best nodes are available

for further expansion.

3. STEEPEST ASCENT HILL CLIMBING

METHOD FOR SHORTEST PATH FINDING

This method is a result of variation in hill climbing.

Here, instead of moving the immediate best node,

all the reachable nodes from current node are

considered and among these the best one is chosen.

In case of simple hill climbing, the first successor

node which is better, is selected, due to this we may

omit the best one. On the contrary steepest ascent hill

climbing method not only reaches to the better state

but also climbs up the steepest slope.

The variation in algorithm will be only in finding the

best successors node from all the possible successor

nodes from all possible successor, and not just the

first best node [2,12,15]. [7] proposed a system in

which the cross-diamond search algorithm employs

two diamond search patterns (a large and small) and a

halfway-stop technique. It finds small motion vectors

with fewer search points than the DS algorithm while

maintaining similar or even better search quality. The

efficient Three Step Search (E3SS) algorithm

requires less computation and performs better in

terms of PSNR. Modified objected block-base vector

search algorithm (MOBS) fully utilizes the

correlations existing in motion vectors to reduce the

computations. Fast Objected - Base Efficient (FOBE)

Three Step Search algorithm combines E3SS and

MOBS. By combining these two existing algorithms

CDS and MOBS, a new algorithm is proposed with

reduced computational complexity without

degradation in quality.

One can notice that hill climbing and steepest – hill

climbing may fail to find a solution. Either algorithm

may not reach goal node as it may reach to a node

where we may not find better nodes. In such cases we

may need to back-track as use more rules before

choosing the next node. However this process will be

time consuming.

Both the methods discussed, may terminate not by

finding a goal node but may reach node from where

no better nodes can be generated.

This will happen if the processing has reached to one

of the following situations:

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 21, August 2017

162

All Rights Reserved © 2017 IJARTET

i) A node might have been selected which may

be better that its neighbors, however there may be

few better nodesavailable which are step away. This

situation is termed as local maxima.

ii) A node might have been selected, whose

neighbors may have the same value and hence

choosing next best node is difficult. This is known as

plateau.

iii) A ridge is a special kind of local maximum,

though the path selected so far may be the best, yet

making further moves difficult.

The next algorithms described here try to overcome

these problems.

4. BEST FIRST METHOD FOR SHORTEST PATH

FINDING

Best first search is a type of graph search algorithm.

Here the nodes are expanded one at time by choosing

lowest evaluation value. This evaluation value is a

result of heuristic function giving a measure of

distance to the goal node. For typical applications

such as shortest path problems, the evaluation

function will be accurate as it accounts for distance or

an absolute value [14,19].

Best first search is a combination of breadth and

depth first search. Depth first search has an advantage

of arriving at solution without computing all nodes,

whereas breadth first arriving at solution without

search ensured that the process does not get trapped.

Best-first search, being combination of these two,

permits switching between paths. At every stage the

nodes among the generated ones, the best suitable

node is selected for further expansion, may be this

node belong to the same level or different, thus can

toggle between depth-first and breadth-first. This

method involves OR graph, avoids node duplication,

and also requires two separate lists for processing.

OPEN list keeps the nodes whose heuristic values are

determined, but yet to be expanded. CLOSE list have

the nodes which have been already checked, further

these nodes are kept in this list to ensure no

duplications. It implies that the OPEN list has the

nodes which need to be considered for further

processing and the entries in CLOSE list indicate the

nodes which may not be re-required in further steps

[6,7].

5. A* ALGORITHM FOR SHORTEST PATH

FINDING

We know that the various search techniques are

designed, tested and are being used for various

purposes whatever it is for system software or

application software. But the base for this is however

mainly because of the problems in planning domain.

Classical approaches to heuristic search algorithm

work on assumption of the existence of

deterministic model of sequential decision making

leading to the solution. The research work

focused on solving planning problems under

uncertainty [1]. Heuristic algorithms have given a

new looked into the problems belonging to this

domain [6,10].

The shortest path problem can be solved by A*

algorithm. The heuristic function needs to evaluate

two costs, g and h. Let g(n), in shortest path problem,

represent cost of choosing the path from starting node

to node n; and h(n) represents optimal cost of node n

to the goal node. Now the cost of node n is given by:

f*(n) =g(n)+ h*(n). However the value of h*(n) will

be unknown in most of the situations, which results

in unknown value of f*(n). A* algorithm, however

makes a best approximation for h*(n)[16,17].

The A* algorithm to solve the shortest path problem

can be written as: [10]

Step 1: Start from the start node; place it in OPEN

list. This will be current working node. Step 2:

Explore all the nodes adjacent to the one in OPEN

list.

Step 3: Determine the cost function for all the nodes

obtained in step 2; and place them in OPEN

list in increasing order of cost function values.

Step 4: Move current working node, from OPEN list

to CLOSE list.

Step 5: Now the first node in OPEN List will be the

current working node (which is having least cost

function due to insertion criteria in step 3).

Step 6: If this current working node is not the goal

state (final node), then repeat step 2 to step 5. Step 7:

The CLOSE list gives the shortest path and the value

of last cost function obtained gives the optimal cost.

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 21, August 2017

163

All Rights Reserved © 2017 IJARTET

6. EXPERIMENTAL RESULTS

All the algorithms discussed in previous sections

were implemented in C++ and run on 2.4 GHz Intel

C2D system with 2GB RAM. The random data sets

were created for varying number of input nodes and

saved in separate files. While testing these algorithms

stored data was given as input data and processed.

The algorithms were tested for the number nodes and

edges explored/visited were compared. The Number

of nodes and edges considered during the process for

various algorithms are given in Table 1 and Table 2

respectively.

ST_HC --Steepest Ascent, BFS—Best First Search

and A*.

Table 1: Number of nodes considered.

The resulting graphs of the two algorithms are given

in Fig 1

Figure 1: Comparison of number nodes considered

against total nodes in graph.

Table-1 shows that there is significant amount of

improvement on number of nodes being

considered in Hill climbing algorithm compared to

the rest of the methods.

One may also observe here that certain unexpected

variations in the values. This is mainly due to the fact

that these algorithms were executed till they find the

solution and were not run for fixed number of

iterations.

10 CONCLUSION

We have presented major class of heuristic

algorithms. The comparison shows that though all

these algorithms can be applied to find the shortest

path, but should not be used unless there is a real-

time, event driven actions are anticipated. The

comparison gives us clear idea that best-first search

and A* algorithms are very well suitable when goal

node cannot be reached from all nodes. However

there may be interesting scenarios that may come out

when these algorithms are applied with different data

structures.

REFERENCES

[1] BlaiBonet and Eric A. Hansen, (2010)“Heuristic

Search for Planning under Uncertainty”, Chapter in

Heuristics, Probability and Causality: A Tribute to

Judea Pearl College Publications. pp 3-22

[2] Eric A Hansen, Rong Zhou, (2007) “Anytime

Heuristic Search”, Journal of Artificial Intelligence

Research 28, pp 267-297

[3] G.Cornuejols and G L Nemauser, (1978)

“Tight bounds for christofides” travelling

salesman heuristic* Short Communication

Mathematical Programming, Vol. 14, Issue 1, pp

116-121

[4] Anne L. Gardner, (Sept 1980) “Search: An

Overview”, AI magazine, Vol. 2, Number 1

[5] R. Korf, (1990) “Real time heuristic search”,

Artificial Intelligence ACM Digital Library, Vol. 42,

pp189-211

[6] RinaDechter and Judia Pearl, (July 1985)

“Generalized Best-First Search Strategies and the

Optimality of A*.”, Journal of the Association for

Computing Machinery, Vol. 32, No. 3, pp 505-536

[7] Christo Ananth, A.Sujitha Nandhini, A.Subha

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7

Hill

Climbing

ST- HC

BFS

A*

Nodes Hill

Climbing

ST-

HC

BFS A*

1200 2400 1211 1900 1100

1400 2800 1326 2400 1188

1600 3050 1500 250 200

1800 3400 1800 2908 1500

2000 3800 1965 2800 1567

2200 4300 2200 3562 2100

2400 4890 2391 1800 1000

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 21, August 2017

164

All Rights Reserved © 2017 IJARTET

Shree, S.V.Ramyaa, J.Princess, “Fobe Algorithm for

Video Processing”, International Journal of

Advanced Research in Electrical, Electronics and

Instrumentation Engineering (IJAREEIE), Vol. 3,

Issue 3,March 2014 , pp 7569-7574

[8] Girish P. PotdarandDr.R.C.Thool, (2013) “An

Alternate way of implementing Heuristic Searching

Technique” International Journal of Research in

Computer andCommunication Technology, Vol. 2,

No 9, pp-793-795

[9] Hen-Yong Pang, Alicia Tang Y.C., (2006)

“A Route Advisory System (RAS) For Travelling

Salesman Problem”, Journal of Applied Sciences

Research 2(1), pp 34-38

[10] C.H. Peng, J.S. Wangand R.C.T. Lee,

(1994)“Recognizing Shortest Path Trees in Linear

Time”, Information Processing Letters, Vol. 57, pp

77-85

[11] Potdar, Girish P., and R. C. Thool. "Comparison

of Various Heuristic Search Techniques for Finding

Shortest Path." International Journal of Artificial

Intelligence & Applications 5.4 (2014): 63.

