
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 3, November 2014

 All Rights Reserved © 2014 IJARTET 1

Implementing a Technique for Protection of
Session Data Dependencies in Web Application

Vaishali Malekar1

Assistant Professor
Department of computer Technology

KITS, Ramtek
E-mail:vaishalimalekar@gmail.com1

Abstract: Security is the essential topic in web application. Online banking, e-mails, e-shopping have become an important
part of our routine life. Web application vulnerabilities cause run-time errors. These vulnerabilities due to broken data
dependencies leads to forceful browsing. With the forceful browsing attack, the attacker gains access to a restricted page
within a Web application by supplying a URL (Uniform Resource Locator) directly (forcing the URL) instead of accessing
it by following links from other pages in the application. The paper provides solution to the problem of broken data
dependencies. The solution employs the tree-based data dependency concept on session data. The solution is developed
using JSP/Servlets technology. The aim of this paper is to protect web application from broken data dependencies.

Keywords: Web application, forceful browsing, broken data dependencies, session data.

I. INTRODUCTION

The importance of web application and its security
increasing day by day. At present there is an increasing
number of web applications in all aspects of business and
education. Also, web applications are becoming more and
more important part of any system. Web application tends to
be error prone and implementation vulnerabilities are
commonly exploited by attacks. So, increasing the reliability
and security of web applications has become most
important issue.

Present technologies such as anti-virus software
programs and network firewalls provide the secure
protection at the host and network levels, but not at the
application level. Existing solution for the broken session
data dependencies is Web Application Firewall (WAF) [9].
WAFs are applied to mitigate a range of vulnerabilities,
including vulnerabilities to forceful browsing. But a
malicious user will typically apply forceful browsing to
exploit implementation-specific broken session
dependencies in data-centered web applications in a more or
less controlled way. So, existing security solutions do not
provide adequate support to protect web applications against
such implementation-specific bugs. This paper introduces a
technique to protect against broken data dependencies
vulnerability. This is an application level vulnerability. The
solution uses the java server pages (JSP)/ servlet technology

for server side implementation. Tree-based dependency
concept is used for defining the interactions between the
components. Hashtable class is used in implementing the
solution.

A. Data Dependencies In Data-Centered Application

In data-centered application, there is a central data
structure and set of components interacting with the
repository. Each component can indirectly interact with
other component, but all the components can indirectly
interacting with the shared repository. At the time of
execution, implicit semantically dependencies exist between
the components and the shared repository.

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 3, November 2014

 All Rights Reserved © 2014 IJARTET 2

Breaking data dependencies is one of the common
risk in data-centered application. These broken data
dependencies vulnerabilities results in run-time errors like
Null Pointer Exceptions. It decreases the reliability and
security of web application. These run-time errors results in
the execution of unexpected application logic, information
leakage and the denial-of-service.

B. Broken Data Dependencies

Broken data dependencies may cause two types of
exceptions in data-centered web application. They are as
below

a. Null Pointer Exception

A data item is not available on the shared repository
although a reading component expects it on the repository
during execution.

b. Class Cast Exception

The type of an available data item does not
correspond with the type expected by the reading
component. These mismatches lead to the runtime errors.
Due to these runtime errors and loose coupling the data can
break in data-centered applications. These broken data
dependencies decrease the reliability and security of the web
applications.

The paper presents the solution to the problem of
broken data-dependencies on session data and how it secure
the application from being exploited. Section I explains the
data dependencies con cept in data-centered application and
run-time errors due to broken data dependencies. Section II
explains the related work and overview of the solution to the
problem of broken data dependencies. Section III explains
the implemented work. Section IV explains the results and
discussion. Section V provides the conclusion.

II. RELATED WORK

Most of the security solutions related to web
application vulnerabilities have already been implemented
[1][2][3][4][5][6][7], but most of them focused on SQL
Injection, cross-site scripting and use tainting, pointer or
data flow analysis. This paper is mainly focused on the
vulnerability of no broken data dependencies. Gould et
al.aim to reduce the number of runtime errors in Web
applications by applying static verification [8]. The solution
focused on the reduction of SQL runtime exceptions and
used a static analysis tool to verify the correctness of all
dynamically generated query strings within an application.

This paper secures the web application from broken
data dependencies vulnerability which is an application level
vulnerability. The interactions between the various
components are defined using the tree-based dependency
concept. At run-time the components will be accessed
according to these already defined dependencies. Dynamic
filter will allow only valid client-server interactions.

III. IMPLEMENTED WORK

Web
 Application

 No broken data
 dependencies found
 so secure application

 Figure 2 Overview of solution

An online shopping application is designed which
is a data-centered web application. JSP/servlet technology is
used for designing. The technology supports the
management of user sessions, also track to which user
session a web request belongs. These technology also
provide the server-side state for each user session. While
processing a web request, server-side web components can
store non-persistent user-specific data (for example, a
shopping cart in an e-commerce site) in a shared data
repository bound to the user session.

 The basic operation of this application are given as below
 The user visits the online shopping web site. If the user

is existing user, he logs in otherwise create an account
 The user browse the items to be purchased and add the

items to be purchased to the cart
 User provides the delivery information to deliver the

product to the respective address
 User submit the payment information for billing

purpose
 User gets the order confirmation message.
 The user is informed that the process is finished.

Now the steps for implementing the solution are discussed

below.

 Define and store all the interacting components using
Hashtable (). Starting path for all the pages(or
components) are stored in the hashtable. Hashtable
algorithm makes the storage and retrieval of these

Define and
Store all the
Components

Specify the
Interaction types
in Read and Write
statements

Specify all
possible execution
paths to these
components

Define all
valid
Client-server
requests

Use Dynamic filter
at runtime to allow
only
valid requests

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 3, November 2014

 All Rights Reserved © 2014 IJARTET 3

paths easier. All the pages are identified by some
particular names like A, B, C, D and so on.

Then define the types of interactions between the
components and the shared repository in the form of read
and write statements. All the pages interact with the
repository by two types of interactions. These interactions
may be read and write. For e.g. productlist page is used to
read the various types of products whereas productcart is
used for both read and write operation.

 Next, apply the tree-based data dependency concept on

these components. Constraints are applied for accessing
the pages in the application. Dependencies between the
components are already defined. All the pages will be
accessed at run-time according to the tree-based concept.
Thus run-time errors can be reduced. For e.g. the starting
point of the application should always be either A or B,
The page B add to cart can be accessed only after
accessing the pages A or C or G or B, the page for
update cart G can be accesses only after accessing the
pages A or C or B. Dependencies between the
components are defined as shown below.

All possible access paths for all the pages in web application
are already specified as given above.

Dynamic filter is used that will allow only valid
requests at runtime. The above implemented solution
guarantees the absence of broken data dependencies on
session data.

Client/Server Interaction: Web application is
triggered by the client who sends a web request for a certain
URL to which the server-side web application will reply.
The interactions between the client and the web server are
typically nondeterministic, since the web user can decide
which links to follow next within the web application. As a
consequence, the protocol between a web client and a given
web application is very open.

This nondeterministic sequence of web requests
makes analysis of the dataflow dependencies in the session,
context or application scope much harder. In contrast to
dataflow dependencies in the request scope, the protocol
history determines here whether or not a dataflow
dependency is satisfied. In fact, satisfying the intended
dataflow dependencies in such a reactive system imposes
extra constraints on the client/server interaction protocol. In
an e-commerce application for example, it makes little or no
sense to contact the payment service before items are added
to the shopping basket. In particular, retrieving a non-
existing shopping basket from the shared session repository
leads in this application to a run-time error for the prepare
basket order. Thus, to satisfy this particular dataflow
dependency, the client/server protocol must be constrained
to only allow the pay command after items are added to the
shopping basket.

The broken data dependencies results in run time
errors which may cause execution of unexpected logic
application, breaking data integrity. Thus the security and

node.put("…JSP/ProductList.jsp",
"A");
 node.put("…/JSP/AddToCart.jsp",
"B");
node.put("…/JSP/DeliveryInformation.
jsp", "C");
node.put(“…/JSP/PaymentInformation.j
sp", "D");
node.put("…/JSP/OrderConfirmation.js
p", "E");
node.put(“…/JSP/Finished.jsp", "F");
node.put("…/JSP/UpdateCart.jsp",
"G");

sessionAtrrbute.put("productlist_read",
"read");
sessionAtrribute.put("productcart",
"write");
sessionAtrrbute.put("productcart_read",
"read");
 sessionAtrribute.put("delivery_read",
"read");
 sessionAtrribute.put("orderconfirm_read",
"read");
 sessionAtrrbute.put("finish_read",
"read");

 tree.put ("Start", "A|B");
 tree.put ("A", "B|A");
 tree.put ("B", "A|C|G|B");
 tree.put("G", "A|C|B");
 tree.put("C", "D|A|B");
 tree.put("D", "E|A|B");
 tree.put("E", "F|A|B");
 tree.put("F", "Start|A|B");

treeCond.put("G","productlist_read|productcar
t|productcart_read");
treeCond.put("C","productlist_read|productcar
t|productcart_read");
treeCond.put("D",
"productlist_read|productcart|productcart_rea
d|delivery_read");
 treeCond.put("E",
"productlist_read|productcart|productcart_rea
d|delivery_read");
treeCond.put("F","productlist_read|productcar
t|productcart_read|delivery_read|orderconfirm
_read");

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 3, November 2014

 All Rights Reserved © 2014 IJARTET 4

reliability of web application can be improved with this
solution.

IV. RESULTS AND DISCUSSION

 User access the online shopping web site. User
browses the items and adds the items to be purchased to the
cart. Then he complete the payment procedure and after the
payment is done, an Order Confirmation page is displayed.
But an attacker has already copied the session link of Order
Confirmation page as shown in diagram below with hyperlin
“http://localhost:8084/BookStoreApplication/JSP/OrderConf
irmation.jsp?SM=item_item”.

 By forceful browsing, if an attacker tries to access
the same session link without following the dataflow
dependency orders i.e. without selecting the item and
adding an item to the cart and submitting the payment
information, he will not be successful to get the Oder
Confirmation page and buying the products without being
an genuine user and adding the product and make payment .
Thus here data depedencies between the pages are not
broken. If there are no broken data dependencies then the
there is no chance for an attacker to exploit the web
application. Thus it is protecting the web application from
getting being exploited by the broken data dependencies
vulnerabilities.

 Thus it guarantees that there are no broken data
dependencies exist between the components and make the
web application more secure.

V. CONCLUSION

 The web applications are prone to error and easily
exploited. If there are broken data dependencies in web
application, it may be the severe problem. By applying
forceful browsing, it becomes easy to exploit the web
application.

 If the data dependencies between the components
are already defined explicitly with the help of tree-based
dependencies concept and defined all valid client server
interactions. These interactions are dynamically verified. If
the user session does not follow the type of interactions then
that session will not be proceed further and ends with an
error page. All the webpages should follow the tree-based
structure where all the possible execution paths for the
webpages is defined. Thus it protect the session data. It may
be possible to remove the broken data dependencies in the
web application due to which there will be no runtime errors.
This paper improves the security of web application by
providing solution to the problem of broken data
dependencies on session data.

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 3, November 2014

 All Rights Reserved © 2014 IJARTET 5

REFERENCES

[1]. T. Pietraszek and C.V. Berghe, “Defending against Injection
Attacks through Context-Sensitive String Evaluation,” Proc.
Eighth Int’l Symp. Recent Advances in Intrusion Detection, pp.
124-145, 2005.

[2]. V. Haldar, D. Chandra, and M. Franz, “Dynamic Taint
Propagation for Java,” Proc. 21st Ann. Computer Security
Applications Conf. pp. 303-311, 2005.

[3]. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D.
Evans, “Automatically Hardening Web Applications Using
Precise Tainting,” Proc. 20th IFIP Int’l Information Security
Conf., R. Sasaki, S. Qing, E. Okamoto, and H. Yoshiura, eds.,
pp. 295-308,2005.

[4]. W.G.J. Halfond and A. Orso, “Amnesia: Analysis and
Monitoring for Neutralizing SQL-Injection Attacks,” Proc. 20th
IEEE/ACM Int’l Conf. Automated Software Eng., pp. 174-183,
2005.

[5]. W. Xu, S. Bhatkar, and R. Sekar, “Taint-Enhanced Policy
Enforcement: A Practical Approach to Defeat a Wide Range of
Attacks,” Proc. 15th Usenix Security Symp., p. 9, 2006.

[6]. V.B. Livshits and M.S. Lam, “Finding Security Errors in Java
Programs with Static Analysis,” Proc. 14th Usenix Security
Symp., pp. 271-286, Aug. 2005.

[7]. N. Jovanovic, C. Kruegel, and E. Kirda, “Precise Alias Analysis
for Static Detection of Web Application Vulnerabilities,” Proc.
ACM SIGPLAN Workshop Programming Languages and
Analysis for Security, pp. 27-36, 2006.

[8]. Gould, Z. Su, and P. Devanbu, “Static Checking of Dynamically
Generated Queries in Database Applications,” Proc. 26th Int’l
Conf. Software Eng., pp. 645-654, 2004.

[9]. T.E. Uribe and S. Cheung, “Automatic Analysis of Firewall and
Network Intrusion Detection System Configurations,” Proc.
ACM Workshop Formal Methods in Security Eng., pp. 66-74,
2004.

[10]. V.B. Livshits and M.S. Lam, “Finding Security Errors in Java
Programs with Static Analysis,” Proc. 14th Usenix Security
Symp., pp. 271-286, Aug. 2005.

[11]. Desmet, L., Piessens, F., Joosen, W., Verbaeten, “Provable
Protection against Web Application Vulnerabilities Related to
Session Data Dependencies,” IEEE Trans. Software Eng., vol.
34 no. 1, pp. 357-370, Jan/Feb 2008.

[12]. Gould, Z. Su, and P. Devanbu, “Static Checking of Dynamically
Generated Queries in Database Applications,” Proc. 26th Int’l
Conf. Software Eng., pp. 645-654, 2004.

[13]. Dhanya Pramod, “A study of various approaches to assess and
provide web based application security,” International Journal of
Innovation, Management and Technology, 2(1), February, 2011.

[14]. Katkar Anjali S., Kulkarni Raj B., “Web vulnerability detection
and security mechanism,” International Journal of Soft
Computing and Engineering, Volume, 2(4), September 2012.

[15]. Nilesh Kochare, B.B.Meshram., “Tool to detect and prevent web
attack,” International Journal of Advanced Research in

Computer Engineering and Technology, Volume, 1(4), Jun
2012.

