
ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
Vol. 2, Issue 2, February 2015

All Rights Reserved © 2015 IJARTET 5

Securing Industrial Control Networks with Cyber
System Physical Security Method by Using Virtual

Honeypots
Divya Ambrita R.L1, Sujithra Jenifer.M2, Vinu.J3

Department Of Information Technology, Francis Xavier Engineering College, Tirunelveli, India1

Department Of Information Technology, Francis Xavier Engineering College, Tirunelveli, India2

Assistant Professor, Department Of Information Technology, Francis Xavier Engineering College, Tirunelveli, India3

Abstract— This paper presents a design and implementation for self-configuring honeypots that passively examine control system
network traffic and actively adapt to the observed environment. In contrast to prior work in the field, six tools were analyzed for
suitability of network entity information gathering. Ettercap, an established network security tool not commonly used in this
capacity, outperformed the other tools and was chosen for implementation. Utilizing Ettercap XML output, a novel four-step
algorithm was developed for autonomous creation and update of a Honeyd configuration. This algorithm was tested on an existing
small campus grid and sensor network by execution of a collaborative usage scenario. Automatically created virtual hosts were
deployed in concert with an anomaly behavior (AB) system in an attack scenario. Virtual hosts were automatically configured with
unique emulated network stack behaviors for 92% of the targeted devices in the AB system alerted on 100% of the monitored
emulated devices.

Index Terms—Industrial control, intrusion detection, network security, self configuring honey pots ,deceptive systems

I. INTRODUCTION

Many modern complex control systems are
interconnected via Ethernet networks. These networks, found
deployed in areas such as chemical facilities or energy
production, are utilized to deliver status and control
information vital to the operation of physical systems. A
compromised control system could have security, public
safety, industrial or economical consequences [1], [2]. The
need for resilient adaptive security systems, specifically
developed for critical cyber-physical systems, is increasing
with the elevated levels of cyber security threats in the
modern world [3], [4]. Furthermore, with the advent of the
smart grid, the number of configurable devices to be
deployed is relatively high. For example, in a typical
advanced metering infrastructure (AMI) system, 1500
wireless sensors report to one or multiple wireless access
points (WAP) nodes [5]. As of April 2010, almost 69 million
of these meters were planned for deployment in the United
States [6]. Assuming a uniform deployment of sensors, this
plan calls for 46 000 WAPs. So, in addition to protecting

existing networks, a large-scale deployment of new devices
will soon be prevalent. Network security monitoring systems
are a significant part of a solution to protecting control
systems. In most contexts, they are rarely capable of
providing perfect intrusion detection [7], [8]. Deceptive
systems, called honeypots, that emulate critical network
entities have been deployed in tandem with monitoring
solutions to improve detection accuracy and precision rates
[9], [10]. It is difficult to list the definitive attributes of a
network host necessary to attract an attacker’s attention. This
requires analysis of attackers’ motivations, which may vary
in depth and details depending on the situation. However, a
reasonable assumption can be made that if any of the real
devices on the network are a desirable target, than emulation
of those systems would be a productive exercise. Given this
premise and the issue of a large device deployment, a
relevant concern is reducing the human effort involved while
providing an improved security posture.

In addition to a honeypots faithful reconstruction of
a host’s network presence, automation is a key capability.
According to John Ouster host, there are four common steps
for turning deployments from an enemy into a friend [11].



ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
Vol. 2, Issue 2, February 2015

All Rights Reserved © 2015 IJARTET 6

First, and most important, is automation. This is essentially a
question of economy. It is usually cheaper to build better
tools than manually manage the configurations of individual
devices in a large system.

In this paper, the collaborative use of dynamic
virtual honeypots in a control system network is introduced.
Aspects of effective tools for identifying network host
characteristics are examined. The presented algorithm
focuses on automatically managing the complexity of self-
configurable dynamic virtual hosts (DVH) by adapting to an
operational network environment. A self-updating model,
based on passive monitoring of the network devices, is
created and maintained. This model is used to configure
deceptive network entities designed to draw the focus of
malicious intent. Finally, a usage scenario is examined to
show how imitating a real network is useful when combined
with an anomaly detection routing.

Honeyd simulates the network stack and generally
provides only superficial services. Because of this, an
attacker is never able to gain access to the host by
compromising a service but would quickly realize that
something is amiss. The primary goal is not to entrap the
attacker into spending all his effort on the deceptive system.
It is to attract his attention, for at least a short time and gather
information that helps identify the attacker and a possibly
compromised internal attack platform.

In this paper, Honeyd was evaluated and logic
created to automatically configure it. The resulting
configuration is designed to emulate, as close as possible, any
user-identified host on the network. This is in contrast to
previous work that focused primarily on dynamically creating
several honeypots, called a honeynet, that in aggregate are
statistically similar to a network of hosts [13].

High-interaction honeypot systems are typically
hardware replicas of existing operational components that
include the appropriate software. For the purpose of this
discussion, virtual machines are included in the high
category. These systems do not mimic services, but are
deployed with working instances. This type of system
provides a high-fidelity solution that is less prone to
discovery of its deceptive purpose by network intruders.
However, they are at a higher risk for compromise by an
attacker and require a more complicated deployment
investment. Deploying a virtual machine is simpler than a
hardware base system, but still requires complex
management scenarios for deploying a wide array of service

software. This includes having copies of multiple OS
distributions and server software.

Finally, honeypots, high or low interaction, can only
detect attacks directed at them. A competent attacker who
discovers that a system is a honeypot will avoid any further
contact with that system. The fidelity of the deception is in
the presentation of the honeypot to the network. How the data
is gathered to create this deception is important.

Passive Versus Active Scanning
The two primary means for gathering the necessary

network host information to create a honeypot includes
passive and active network scanning. Unfortunately, most
research to this point provides minimal analysis on suitable
tools for passive information gathering. This is a key
enabling capability if the intent is to deceive an attacker into
believing an emulated system is real. This paper corrects this
deficiency by examining characteristics of six existing tools
and consequently recommends a tool, previously not used in
this context, called Ettercap [14].

In most of the literature reviewed, passive scanning has
been implemented with P0f and occasionally Snort [13], [15].
P0f is a command line tool that utilizes an array of
mechanisms to identify hosts in a network stream. It is a
passive OS fingerprinting tool frequently cited in creation of
dynamic virtual honeypots. Snort is inherently a rule-based
intrusion detection system.

The amount of information that may be gleaned from
passive scanning is a limited subset of possible information
[16]. A passive scanning-based tool is restricted to only
gathering data that is offered in the captured stream. If a
service on a host is available, but not utilized, this data point
will be missed. Active scanning may prove more successful
at extracting this type of information.

Nmap is an active scanning tool that has proven useful
for interrogating hosts on a network [17]. However, a
downside to active scanning is the possible interruption of
services on hosts. This problem is especially acute in control
systems. For instance, ping sweeps on older systems have
been known to disrupt normal operation and cause physical
damage [18]. Active scanning also provides a beacon of
network activity outside the norm and could be revealing for
intruders listening in on the traffic. In either case of active or
passive scanning, the resulting information may be used to
configure a honeypot.

II. RELATED WORK



ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
Vol. 2, Issue 2, February 2015

All Rights Reserved © 2015 IJARTET 7

DHP solutions that gather network information,
process that information into a configuration, and deploy
appropriately have been created as in [13], [15], [19], and
[20]. These papers propose monitoring methods that are
active [19], passive [13], combined [15], or ambiguous [20].
When passive monitoring is implemented, the chosen tool is
typically P0f with no analysis of competing tools provided.
Finally, the test implementations are all on noncontrol system
networks.

There are two notable projects related to control
system honeypots. The supervisory control and data
acquisition (SCADA) Honeynet project by Matthew Franz
and Venkat Pothamsetty of the Cisco Critical Infrastructure
Assurance Group (CIAG) was initially released in March
2004 [21]. The project is not actively maintained, with a last
release date of July 15, 2005; however, it is still available
from Source forge. The design utilizes Honeyd for simulating
a set of services for a PLC. The major contributions of this
project are service scripts, which include functionality for file
transfer protocol (FTP), Mod bus, Telnet, and a web server.
However, the SCADA Honeynet does not consider automatic
provisioning of the virtual hosts and is a manually configured
project.

Digital Bond, Inc. is a control system security
consulting and research group founded by Dale Peterson.
Their SCADA Honeynet implementation is an evolution of
the original project just described [22]. It utilizes two virtual
machines instead of Honeyd. One virtual machine includes
network monitoring tools such as Snort with Digital Bond’s
Quick draw IDS signatures to detect activity. The other
virtual machine simulates a PLC with several exposed
services. There is no dynamic provisioning of hosts or
services, although it is possible to replace the virtual machine
PLC with an actual hardware component. This assures
complete deception if the PLC is configured correctly with
the added expense of an actual hardware device.

III. SOLUTION DESIGN
This section describes the software tool evaluation

and implementation logic of the solution. Fig. 1 shows the
relationship of three key functional areas: 1) network entity
identification (NEI); 2) DVH configuration; and 3) virtual
host instantiation (VHI). These act in a continuous cycle of
processing and updating information represented by the
dotted line box.

Network Entity Identification The NEI component
monitors network traffic from which it extracts the source,

destination, and port activity. Information from the NEI is
delivered to an implementation of the logic tasked with
creating a DHP configuration. These hosts emulate the actual
systems. Honeyd is the popular open source solution which
helps for configuration process. As autonomous
configuration is an important aspect in this paper and it
reduces human involvement the honeyd configuration is an
advantageous one. Anyhow the overall goal is the
configuration and emulation by network information
gathering.

An evaluation was conducted on six passive
network information gathering open source tools to
determine their strengths and weaknesses relevant to support
of automated configuration. The tools evaluated for
providing network host identification are: P0f [23], Tshark
[24], Ettercap, Snort [25], Tcpdump [26], and Ntop [27]. Of
the six tools, Ettercap and Ntop provide well formatted
structured output as an option. Another tool, called SinFP
[28], was removed from consideration because it did not
execute correctly on the test sensor system.

In addition to identifying network entities, NEI
needs to provide the information necessary to create a
representative virtual network presence. The critically
required capabilities examined were OS identification, port or
service identification per host, and the capture of media
access control (MAC) addresses with a resolution to the
appropriate vendor [15]. Considering that Ntop and Ettercap
fulfill all three criteria. Of the two candidates, Ettercap was
chosen for its support of XML output, completeness of
information provided from this output, and available
functionality for support of future work.

The system, as configured during the test, had 46
physical connections to the network. The second column
contains the number of OS identified by each tool. Ntop’s
identification of 202 hosts in column 3 contains duplicate
entries for entities that have both IPv4 and IPv6 addresses.
Additionally, records created for broadcast addresses inflate



ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
Vol. 2, Issue 2, February 2015

All Rights Reserved © 2015 IJARTET 8

the host number. Ettercap outperformed or equaled the other
tools in three of the four categories.

Ettercap is an extensible network manipulation and
reconnaissance tool [14]. It is an established and popular tool
in the hacking community. However, this paper is the first to
establish its use as a source of information for DHP creation.
It was run as a daemon process with unified sniffing. In this
mode, it maintains internal network host records and updates
them as new information is found. A binary log file is
continuously updated as well. An Ettercap companion
executable Etterlog is then run on the log file with a -x option
to produce an XML file. This data file is the source for
communication of the network entity information to the DVH
configuration process.

In conclusion of this section, the Ettercap tool was
selected for identifying network entities. It provides
information on host Internet protocol (IP) addresses, MAC
values, and port usage. When compared with the five tools
listed in Table I, it performed as well or better than all of
them. An additional key driving capability is Ettercap’s
formatted XML output that can easily be integrated into other
systems. Communication within an automated system
requires a defined consistent messaging system. Finally,
Ettercap is capable of performing more advanced operations
that could be useful for future functional enhancements.

Dynamic Virtual Host
This section discusses the configuration creation of the DVH.
These hosts emulate the network signature of actual systems
on a physical network. Honeyd is a popular open source
solution for virtual honeypots that provides a flexible and
feature rich configuration capability. As autonomous
configuration is a desired aspect for minimization of
expensive manual configuration, Honeyd’s configuration
flexibility is an advantage. The overall goal is the automatic
configuration and dynamic update of a variable length list of
virtual hosts based on information gathered from actual hosts
using Ettercap.

The following sections describe four functional
areas in DVH: 1) OS selection; 2) OS name mapping; 3)
MAC creation; and 4) Service (port) emulation.

1) OS Selection: For any given host on a network,
Ettercap may not be able to identify the operating system. If
this occurs, for an emulation target, then an OS must be
chosen. It is desirable to provide an exact match in network
behavior. This does not necessarily require an exact match
with the OS name in the database.

Read_data  consists of extracting n  host records h
from the Ettercap entries and forming a record set O  such
that O=h1,h2……,hn. O then becomes a source of
information for creation of virtual hosts. The intention is to
examine these records for similarities to an IP address
provided in a list of j target IP addresses, where IL=i1,i2….ij.
An assumption is being made that the hosts h on the network
have an OS similar to a candidate i even if an exact match is
not found.

Given that Ph is a set of port values for a host h and
a network port set si for target ti ,Find _Closest examines the
intersections of Si intersection Ph for all h in O . The integer
count of matching ports is stored for each intersection. In
addition, the number of ports for the target is calculated.
Given these values, a match percentage is calculated, e.g.,
two candidate ports and an intersection count of two
constitute a 100% match. Candidates with a higher
percentage were considered to be more similar. Some OSs
utilize ports specific to services offered by that OS, and they
could be used in identification [16].

If a candidate OS is not identified by examining
ports, then the MAC address is examined. Find _Closest
compares the vendor identification section of the candidate
MAC address of i with the MAC addresses for each host h in
O . If a match is found that has an identified OS, then this
value is placed on a candidate list.

1)OS selection:
After exhaustively examining, the largest matching value, if
one exists, from the candidate list is chosen as the OS. The
assumption is that any hosts on the network that have the
same NIC vendor may be performing similar functions and
thereby have a similar OS. As is described later, several
control system vendors have an organizationally unique
identifier for their network devices. If no prior step has
identified an OS, a random number is generated in the range
0 to where is the cardinality exists. If the host record OS field
exists, then this value is utilized. If not, a random value
supported by Honeyd is chosen. In other words, a field is
possibly selected for inclusion proportional to the relative
frequency of its presence in . Given that not all host
records contain an OS and possibly none of them.

2) OS Name Mapping:
The Honeyd configuration value for an OS makes use of the
Nmap version 1 database defined named values. Similarly,
Ettercap utilizes its own defined name values that do not
directly match Nmap. To make a functional configuration, a



ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
Vol. 2, Issue 2, February 2015

All Rights Reserved © 2015 IJARTET 9

simple algorithm implemented was developed to associate
Ettercap names with Nmap names. The algorithm’s initial
pass compares the word tokens of the OS names, looking for
case-insensitive string matches. The number of word matches
were summed and stored. After iterating through each
possible OS combination, the one with the largest count total
is presented as a candidate. Finally, each OS name
combination is written to a file for reference during creation
of the configuration.

3) MAC Creation:
Honeyd provides two options for specifying the MAC
address, either by vendor name or the six-octet string.
Because Honeyd has hard coded vendor strings, the six-octet
representation was chosen for use in the algorithm. Ettercap
captures this MAC octet address for all hosts in . The MAC
protocol specifies that the first three octets are
organizationally unique and should not overlap with any
other vendor. Thus, in order to create a new MAC address
that appears to come from a specific vendor, these first three
octets were used. The vendor typically assigns the remaining
three octets.

In this function, the last three octets are randomly
generated and appended to the end of the captured candidate
vendor portion. This new MAC is then compared with all
other MACs noted in the Ettercap host list . Any collision of
addresses instigates a recreation of another random set of
values. Given the possible values, the probability of a
collision is

Network Service Emulation
The host entries in contain network ports, previously defined
as active during the capture session. Along with the port
number, a port service name is available. This service name
is a human readable text value that is defined in an Ettercap
configuration file called etter services. Utilizing the service
names contained in this file, a new configuration file called
serv.conf was created. This file maps the service name to a
service emulation script path. The _ function examines any
service ports found in the Ettercap output and loads the
serv.conf file. Any service name match to entries in the file
results in the appropriate service script value placement in the
Honeyd configuration. This enables the creation of service
specific behaviors that furthers the goal of deception.
Currently, the manual creation of scripts is necessary,
although some service scripts are already available from
other projects. Automatic creation of these behavior scripts is
another future area of exploration.

In addition to services found during passive
scanning, a variable number of ports associated with the
common services are randomly activated. A common service
mapping file for control system devices is utilized by the
function. It consists of a hierarchical MAC mapping
structure. Generally, in the case of a control system device,
the vendor portion of the MAC is directly tied to the device
manufacturer, enabling usage of the mapping file to find
relevant services. Constructed utilizing XML, the file maps
the vendor MAC to a list of common services that are
possible to find activated on a device of this type. Each
service in the file is described by the following attributes:
port number, protocol, service description, and action script.
The action script specifies which script Honeyd should
utilize, if any, when it sees traffic to this port. A value in this
field will overwrite any previously defined default script
found in server configuration. This provides the capability to
customize a response to this specific device type while still
retaining generic service emulation functionality.

Each service description has an “include” value.
This is a floating-point value between 0.0 and 1.0. This value
is compared to a randomly generated value in the appropriate
range. If the random value is less than the include value, then
the port is added to the honeypot configuration. The intention
is to vary port inclusion to represent the variability in device
configurations.

An analysis of available vendor product
specifications was
used to create this file. For example, the test system contains
a Rockwell Micrologix 1100 PLC and the possible services
listed for this consist of Ethernet/IP, web services, simple
mail transfer protocol (SMTP) email (outbound), and simple
network management protocol (SNMP) [29].

VHI and Update
The candidate emulation hosts are provided at startup as a list
of IP addresses. It is assumed that if a host in the list
disappears from passive sensing, then the user still desires to
have an emulated version of it. The overhead to maintain the
missing hosts’ records is minimal. Of course, the actual



ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
Vol. 2, Issue 2, February 2015

All Rights Reserved © 2015 IJARTET 10

system has to have appeared in the passive analysis during
the monitoring period to create an initial virtual host
configuration. An initial configuration file is created by
Changes to the configuration of the virtual hosts running
under Honeyd are performed while the system is running.
After a configurable time period, currently an arbitrarily
chosen 60 s, etterlog is called on the ettercap daemon log file.
The resulting XML output is saved and compared to an
existing output file. Differences in network host activity are
noted and stored on a list for possible action. Actions include
adding network services, updating OS configuration, and
changing MAC addresses. A companion executable file,
called Honeyd provides this functionality.

USAGE SCENARIO AND RESULT

In the following test scenario, scans and probes are
directed at all devices on the network representing the
reconnaissance phase of an intrusion. This assumes that the
attacker is an outsider and does not have a network map. The
goal of the security system is to generate informational alerts
about the anomalous presence. A secondary effect is the
diversion of attention and effort of the. attacker to a virtual
honeypot system. Keys for success include: a faithful
imitation of real devices on the network, a mechanism for
monitoring activity directed at the honeypots, and appropriate
communication of emulated IPs and alerts. To improve the
cyber security of network systems, various approaches can be
applied [30]–[32]. One of the most common approaches is
anomaly detection. An anomaly detection system is trained
on a set of normal network behaviors. The extracted behavior
model is then used to detect anomalous behavior in any
subsequently observed traffic. One of the difficulties of this
approach is building a comprehensive normal behavior model
for a specific network communication system. Typically, a
user-defined period of activity is designated as “normal”.
However, by definition, any network activity directed at a
honeypot can be considered abnormal. This provides a
definitive source of information for classifying traffic that
does not require direct user interaction. Anomaly behavior
(AB) implementation details are not covered in this paper,
but may be found in previous work of the authors [32], [33].
For this test scenario, an AB system was configured to
monitor the virtual honeypot IP addresses and send alerts on
any activity.

The role of the automatically created honeypots is
to attract and possibly delay an intruder on the network. This
usage is similar to that proposed in [7] and [34]. The intended

deployment is an operational control system network with a
heterogeneous mix of hosts. There are two possibilities for
timing when the honeypots are instantiated. The first
approach, used in this test scenario, is to create the virtual
hosts in advance of any anomalous situations. This would
increase the probability of a network scan identifying the
hosts. It removes the race condition between recognizing an
anomaly and getting the hosts instantiated in time to get
noticed. The second approach, with the race condition, would
be to instantiate the hosts after some indication of intrusion
has occurred. This indication could come from a traditional
intrusion detection system or some other security mechanism.
Given the DVH use of virtual hosts with its reduced
hardware requirements, a dedicated integrated host and low-
network impact, there is little benefit to delaying instantiation
until after detection. At the beginning of the scenario, all
hosts are running and a sensor host with the virtual host logic
is connected to the control network. As the NEI component
becomes aware of changes in the host characteristics, the
honeypots are automatically reconfigured to include the new
behavior. The emulated hosts become more authentic
appearing, in the service ports offered, over time. As already
mentioned, this early instantiation reduces the risk of a
stealthy intruder bypassing the honeypots, as they will most
likely be present prior to the malicious activity.

Test Network
An existing small campus grid (SCG) and sensor network
that physically exists in the Center for Advance Energy
Studies in Idaho Falls, Idaho was used to test the algorithm.
The network includes a suite of wireless sensors targeted at
environmental conditions in the building, wind and solar
renewable resources, and a variety of control system devices.
The SCG is connected to a small wind turbine, a solar power
station, and a wireless AMI. Additionally, the network has
several Windows-based computers, web camera’s, a
Rockwell Automation PLC, and a National Instruments PLC.
The SCG network contains wireless systems from Emerson,
Honeywell, and Arch Rock. Each system connects wirelessly
to the sensors via a wireless access point. These WAP
gateways have a wired connection on one side of the network
and wireless interfaces to remote environmental sensors. The
network sensor device has visibility on the wired side of the
connection. Each wired WAP connection has a variation in
the method of Ethernet network protocols utilized that makes
each one a unique challenge to emulate. For instance, the



ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
Vol. 2, Issue 2, February 2015

All Rights Reserved © 2015 IJARTET 11

Emerson device transports data at the raw Ethernet level
using a custom protocol.

The software for the implemented algorithm was
deployed on a test host platform. This platform runs a 32-bit
Ubuntu 12.04 OS on a dual core Intel Atom 330 processor
with 2GBof double data rate 2 (DDR2) RAM, a 250-GB hard
drive and three gigabit Ethernet (GigE) network ports. One of
the Ethernet ports was dedicated for use by the honeypot.
Honeyd is capable of running multiple virtual hosts on one
physical network interface. The second port was used to
perform passive monitoring by NEI. The final port was
connected to a second separate network used for management
of the devices.

Test Steps and Result

A PERL implementation of the algorithm was run
on the test sensor platform attached to the operational test
network. In addition to OS emulation performance, seven
network test probes were completed. The ID column is used
as a reference identifier and corresponds to the last octet used
in the emulated IP address. For completeness, the Honeywell
wireless access point is included. Because it does not utilize
an IP address for communication, Honeyd cannot emulate
this device.

Initiate Honeypots:
An input text file for the DVH component contained two sets

of space delimited IP addresses labeled R and E. List R
contains the unordered IP addresses of real hosts. List E
contains the list of IP addresses to be assigned to the
emulated hosts. The lists represent a bi adjective function, in
that f: > is a one-to-one and onto mapping of set R to set E.
The same message was initially sent to DVH. Three virtual
honey pots were created and verified by sending Internet
control message protocol (ICMP) echo messages. After 60 s,
a newly updated input text message was sent containing 12
test IP addresses. The software automatically created
configurations for all of the devices. Each emulated host was
assigned its own unique IP and MAC address and was
instantiated on the test sensor hardware. These actions
verified that the integrated communication mechanism works
and virtual hosts are instantiated. Specifically, the NEI
component created a network model stored as an XML
file. The message passing mechanism is a simple text file
dropped into a specific directory. The application
continuously monitors the appropriate directory for a new
file. After receipt of the message, the AB commenced passive

monitoring of the 12 virtual hosts. Of the 13 devices initially
chosen for emulation, 10 specific OS were configured
autonomously, two were “random,” and the Honeywell
device was undetermined.

1) Network Scan Tests and Results
Nine tests, described next, were executed on the virtual hosts

using Nmap, the open vulnerability system (Open VAS), and
the ping command line tool. Nmap version 5.21 was chosen
to test the network presence of the emulated devices. This
version utilizes the second generation Nmap OS database that
is actively maintained. It uses a more robust guessing
implementation for uncertain signatures. OpenVAS is a
flexible comprehensive security scanning tool. It is capable
of over 30 000 network vulnerability tests. A laptop, with
Nmap, Open VAS, and ping installed, was assigned the IP
address 192.168.1.15 and attached to the SCG network. The
laptop filled the role of network intruder.

a) Test1: This simple test performs a “ping sweep” on
all 256 addresses in the range that contains the 12
emulated devices. A combination of an ICMP echo
request, transmission control protocol (TCP) SYN to
port 443, TCP ACK to port 80, and ICMP
timestamp request are sent. Any system that
responds to one of these requests is considered
available on the network. All 12 of the emulated
addresses were found in 2.2 s.

b) Test2: This command line is the first example
provided in the Nmap man page documentation. The
-A option enables aggressive scan options including
OS detection, version scanning, script scanning, and
trace route. The -T4 option is a timing template that
improves scan time on reasonably stable networks.
Note that, by default, Nmap only scans 1000 of the
most commonly used ports. It completed in 234 s.
OS detection in Nmap is based on a database of
signatures. Each fingerprint record in the database
contains four fields: vendor, OS family, OS



ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
Vol. 2, Issue 2, February 2015

All Rights Reserved © 2015 IJARTET 12

generation, and device type. Output from detection
includes lists of possible OSs and device classes
with an accuracy score. The score falls in a range of
0.0–1.0 with the later indicating a perfect match.
The OS detection produces large amounts
information. For the 12 emulated devices, 223
device types and 40 OS matches were returned. In
both cases, accuracy ranged from 0.85 to 0.97. As
there were multiple results for most of the emulated
devices, any of the entries that matched either the
original device or its mapped OS were considered a
success. Of the 10 non-random devices, Nmap
identified seven for a 70% success rate. Of the three
that failed, no information was produced for device
2. Twenty-one incorrect entries were created for
device 215. Device 5 was identified by one incorrect
entry.

c) Test 3: This scan sends IP packets and iterates
through the 8-bit IP protocol field. The emulated
hosts responded to only three of the 256 protocols:
ICMP, TCP, and UDP.

d) Tests 4: Utilizing the ping command line tool,
ICMP echo requests were sent to the 12 emulated
and 46 actual devices on the test network. ICMP
packets are wrapped in an IP datagram and can
contain IP option fields. Three rounds of requests
were sent, one with the Record Route (-R) option,
one with timestamp only and finally the option with
both IP and timestamp address (tstampaddr). All but
one of the physical devices responded with varying
levels of correctness to the pings. None of the 12
emulated devices responded correctly.

e) Test 5: The OpenVAS framework was leveraged
to perform more intensive network probes than Nmap on the
virtual hosts. A single large-scale discovery and vulnerability
scan was executed against the 12 virtual hosts. Of the
available 32 418 plugins, 3778 were enabled for the scan.
Plugins are attributed to a wide variety of functional
categories and enable specific scanning behaviors. Many of
the plugins execute on the target host with the appropriate
credentials. Host plugin types were disabled. All 12 devices
and their open ports were discovered during the scan. The
activity took 21 min and 44 s to complete, and a scan report
was produced. At the initial level of detail, the finished scan
report looked similar to those reports from scans against the

actual hardware. However, several differences were found
when looking at the details. All of the devices had a common
warning about a multicast address response flaw that could
lead to a denial of service attack. This kind of similarity
could possibly be leveraged to facilitate identification of
virtual hosts. In this particular instance, a configuration
change to the virtual hosts would remove the commonality.

f)Test 6—Anomaly Test: As was mentioned earlier in
this section, a message with the 12 emulated IP
addresses was sent to the AB component. The function
of the AB component is to passively monitor host traffic
and send alert messages. If the AB component receives
an input IP, for which it has not been trained, then it will
consider all traffic to it as abnormal. This is a convenient
feature for the intended use of honeypots in this system.
The AB posted abnormal behavior messages for %100 of
the monitored emulated hosts during tests 1–7. A . It
contains the source IP address, destination IP address,
and the IP layer protocol number involved. In the
example, protocol 1 indicates ICMP.

ANALYSIS

Although honeypots, physical or virtual, emulate real
operations systems at some level, there is no guarantee that
attackers would perform a scan of a network. However, if one
is conducted having emulated devices similar to actual
devices can provide a benefit to the security of the system.
Minimally, it makes the attackers analysis of the devices
difficult by increasing the amount of data to analyze.
Additionally, the attacker will waste time and effort if an
emulated device is chosen for further probing. This provides
defenders with extended opportunities to identify intruders on
the network. Based on information from the tests, industrial
control network protocols are a viable candidate for
emulation by the presented algorithm. Application ports are
fixed, unusual ports that readily identify the use of a
particular protocol. Given the passive nature of information
capture, active network sessions are needed to discover the
ports and nature of the service. For instance, the test system
contains a Rockwell Micrologix 1100 processor that uses
EtherNet/IP for communication.

The network traffic from the operator HMI to this
device occurs on port 44818 using TCP. The TCP connection
is maintained for the duration of the session. The traffic
between the HMI and control device is regular in size and
timing. The packet lengths were as follows: 19.15% between
40 and 79 bytes, 80.82% between 80 and 159 bytes, and
0.04% between 160 and 319 bytes. The average packet size is



ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
Vol. 2, Issue 2, February 2015

All Rights Reserved © 2015 IJARTET 13

95.861 bytes. This regularity benefits the anomaly detection
algorithm as well. The background section is a discussion on
the choice of passive scanning for host information. One side
effect of passive scanning is the inability to directly identify
network ports not in use. While the control system network
traffic is typically regular and a constant connection, it or
other services may not be enabled. However, having these
inactive services as part of the virtual hosts is beneficial to
the presented deception. The mechanism to support this
capability is found in the Device_Features function described
in the solution design section. Originally created to add
optional services for control devices.

An Nmap scan of the device revealed six open TCP
ports. Passive scanning identified four of the ports. One of
the missing ports was for a terminal service that was not
accessed during the test time frame. This terminal service
port was subsequently added to a service file with a
probability of addition set to 1.0. All subsequent re-runs of
the test scenario then included this port in the configuration
for that virtual host. Prior to this configuration change, the
passive discovery tool discovered 30 of the 33 of the ports
found in an active Nmap scan on the 12 test devices. Tests
were designed to evaluate the network presence of the virtual
hosts. Test one verified that as a base case 100% of the
virtual hosts were discoverable on the network. At a
superficial level, they appeared to be legitimate devices. Test
2 provided a more in depth network probe designed to verify
the OS representations. The scan correctly identified
70% of the devices. A more intensive OS scan in test 3
correctly identified 80% of the emulated OSs. So given both
are superficial. The virtual hosts appear to resemble actual
hosts, at a 70% or 80% accuracy rate. This shows the end
result of an effective integration of the information gathering,
communication, and host creation logic.

Scalability and Security Issues:
Scalability of the presented solution relies primarily on the
capability of the hardware host. Honeyd is technically
capable of emulating65 535hosts. Testing by the Honeyd
authors knows that on a modest system thousands of different

honeypots are possible [12].To validate this claim,a test with
986 virtual hosts was run on the test platform. The Honeyd
OS signature database contains 986 entries. Each host
configuration was created similar with a unique OS entry
from the database and an IP address. The Nmap command in
Test 1 was then executed targeting the 986 IPs. The top
command was run on a 1-s interval to capture CPU and
memory usage of the Honeyd daemon. At rest, prior to the
Nmap tests, 8748 KBs of memory was consumed. 8860 KBs
were used at the conclusion of the test. The average CPU
utilization was 0.3% with a standard deviation of 1.23% and
a maximum of 14.9%. This testing is not comprehensive, but
does validate that, at a superficial level, a large number of
virtual hosts can be created. Honeyd is single threaded and
with more intensive probing, it is possible to maximize
utilization of a single CPU. The test system has two CPUs
and can continue to function even if this occurs.

The tested hardware host uses a long-term support
(LTS) version of Ubuntu 12.04. This OS has a 5-year support
cycle that includes security upgrades. As part of the hardware
design, three physical Ethernet ports were specified. The
ports are all assigned to a specific communication task to
avoid a complete denial of service situation. For instance, if a
large number of honeypots are active and consuming the
entire bandwidth of a single port, then the system can still
communicate on another port assigned to the management
network. Updates to the host OS, communication of alerts,
and IP monitoring/emulation lists are delivered on a separate
management network. The second interface is configured as a
passive read only interface on the operational network. This
means it is not directly addressable from another host on the
network. One security concern is a possible flaw in the
monitoring software attached to the interface. The third
interface is for use by the honeypot software to present its
emulated hosts on the operational network. The most likely
threat to the host is from this interface. This is a logical
outcome considering that the honeypots are designed to
attract the attention of those with nefarious intent. This threat
is partially mitigated by the design of Honeyd. The software
runs as a restricted user and, by default, does not provide any
real services to compromise. For instance, on a high
interaction honeypot, there are real shell services that might
be compromised. Note that this does not rule out a denial of
service or exploitation of a possible flaw in Honeyd itself. In
addition to the Honeyd features, a host monitoring system
such as OSSEC [35] can be utilized to provide self-
monitoring. Finally, it is not required that Honeyd and the
AB routines reside on the same machine. However, by



ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
Vol. 2, Issue 2, February 2015

All Rights Reserved © 2015 IJARTET 14

condensing the software installs to one platform, it simplifies
configuration. This also provides an opportunity to explore
the recently expanding computational capabilities of low-
power multi-CPU devices.

CPU and Memory Performance Measurements:
The DVH configuration logic, when implemented in Perl and
run on the test machine previously described, took 0.7 s clock
time to run and utilized 21 MBs RAM. The input Ettercap
XML file contained 46 host entries and the resulting Honeyd
configuration file included 12 devices. When running this
configuration file, Honeyd consumed 5.7 MBs of RAM.
During active scanning with Nmap, this would increase to 7.2
MBs. Ettercap was run continuously in daemon and logging
mode on the test machine. It utilized 6 MBs of RAM and
would utilize up to 60% CPU time when the Ethernet port, it
was monitoring, was utilized to transfer data files.

IV. CONCLUSION
We proposed automatic deployment and

configuration, a usage scenario was executed. In this
scenario, an anomaly detection system monitored the
network activity of the honeypots. The role of the
automatically deployed honeypots was to attract and possibly
delay an intruder on the network. The primary enabling
technologies included continual host monitoring,
reconfigurable deceptive virtual hosts, and a network AB
monitor.

REFERENCES

[1]. Philip Auerswald, Lewis M. Branscomb, Susan Shirk,”critical
infrastructure:control systems and the terrorist threat”vol14 no2,
pp-120-130,march 2007[2] Yu­ Lun Huangc , Alvaro A.
Cárdenasa, Saurabh Aminb, Zong­ Syun Linc,     Hsin­ Yi Tsaic,
Shankar Sastrya” Understanding the physical and economic
consequences of attacks on control systems”vol 11, no6,pp-110-
119,april 2009

[2]. GordonRueff,BryceWheeler,ToddVollmer,TiMcJunkin.” INL
Control System Situational Awareness Technology Final Report
2013

[3]. IEE report 2012,” utility scale smart meter deployments plans and
proposals”

[4]. Peter Fanfara, Marek Dufala, Ján Radušovský,” Autonomous
Hybrid Honey pot as the Future of Distributed Computer Systems
Security” Acta Polytechnica Hungarica, Vol. 10, No. 6, 2013

[5]. Dr. Ali M. Al-Khouri United Arab Emirate,” e Government
Strategies The Case of the United Arab Emirates (UAE)”security
issue vol 2, no 8,pp-78-97,may 2014.


