
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 2, October 2014

 All Rights Reserved © 2014 IJARTET 57

Implementing Vehicle Control System Using
I2c Protocol

K.M.Sivakumar1, B.Gopalakrishnan2
PG Scholar, Embedded System Technologies, Angel College of Engineering & Technology, Tirupur, Tamil Nadu 1

Asst. Professor, Department of EEE, Angel College of Engineering & Technology, Tirupur, Tamil Nadu2

Abstract: Currently, Automobiles are been get developed using various control parts for effective conditional operation.
Normally, a vehicle is been built with a driver and vehicle interface to control over the features of pressure, temperature,
speed, motion, LDR, etc., In many embedded based applications the communication fetches the important factor for
sending the data’s. It includes USB, USART, SPI, CAN, and I2C. This paper reveals I2C provides ease of communication
without data losing comparing to others. It is simple in nature, cost effective and accurate than other serial communications.
Here, their communications been carried over through the serial data (SDA) and serial clock (SCL). So the given method
describes how the data been shared between the controllers using Proteus Software and can be implemented using
Raspberry Pi and Beagle Bone developer board.

Keywords: I2C Protocol, data losing, SDA, SCL

I. INTRODUCTION

 The term embedded system is quite a complex one.
Simply it is a combination of hardware and software that
forms the component of a larger system; this in turn is
programmed to perform a range of dedicated functions
usually with a minimal operator intervention. In embedded
systems the hardware is normally unique to a given
application; computer chips are embedded into the control
electronics to manage the products functionality. Embedded
systems are rapidly becoming a catalyst for change in
computing data communications, telecommunications,
industrial control and entertainment sectors.

 Serial interface allow processors to communicate
without the need for shared memory and the problems they
can create. There are Serial communication protocols like
UART, CAN, USB, SPI, and Inter IC. USB, SPI and
UARTS are all just one type to point type protocol. USB
uses multiplexer to communicate with the other devices.
Only I2C and CAN protocol uses software addressing. But
only I2C is very simple to design and easy to maintain.

II. OVERVIEW

The I2C allows connection of up to 128
individually addressable devices using only two bi-
directional lines: clock (SCL) and data (SDA). The only
additional hardware required is a pull-up resistor for each of
the lines. Each of the connected devices can be either a
master or slave device. Only master devices are allowed to
drive the clock line.

 At the physical layer both SCL and SCA lines are
in open-drain, hence the pull-up resistors. Increasing the
number of devices on the I2C bus will also increase the line
capacitance and thus reduce the slew-rate. The slew-rate can
be controlled by changing the drive strength in the GPIO
module for the I2C pins. The size of the pull-up resistors can
be calculated as a function of the maximum rise time
allowed for the given bus speed and the estimated bus
capacitance.

Multi-master, two wire bus, up to 100 kbits/sec.
One data line (SDA) One clock line (SCL) Master controls
clock for slaves. Each connected slave has a unique 7-bit
address.

Fig. 1 Basic Block Diagram for I2C

Originally, the I2C bus was designed to link a small

number of devices on a single card, such as to manage the

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 2, October 2014

 All Rights Reserved © 2014 IJARTET 58

tuning of a car radio or TV. The maximum allowable
capacitance was set at 400 pF to allow proper rise and fall
times for optimum clock and data signal integrity with a top
speed of 100 kbps. All I2C devices are designed to be able to
communicate together on the same two-wire bus and system
functional architecture is limited only by the imagination of
the designer.

But while its application to bus lengths within the
confines of consumer products such as PCs, cellular phones,
car radios or TV sets grew quickly, only a few system
integrators were using it to span a room or a building. The
I2C bus is now being increasingly used in multiple card
systems, such as a blade servers, where the I2C bus to each
card needs to be isolatable to allow for card insertion and
removal while the rest of the system is in operation, or in
systems where many more devices need to be located onto
the same card, where the total device and trace capacitance
would have exceeded 400 pF.

New bus extension & control devices help expand
the I2C bus beyond the 400 pF limit of about 20 devices and
allow control of more devices, even those with the same
address.

These new devices are popular with designers as
they continue to expand and increase the range of use of I2C
devices in maintenance and control applications.

I2C Features:
 Only two bus lines are required: a serial data line

(SDA) and a serial clock line (SCL).
 Each device connected to the bus is software

addressable by a unique address and simple
master/slave relationships exist at all times; masters
can operate as master Tx (or) Rx.

 It’s a true multi-master bus including collision
detection and arbitration to prevent data corruption if
two or more masters simultaneously initiate data
transfer.

 Serial, 8-bit oriented, bi-directional data transfers can
be made at up to 100 Kbit/s in the Standard-mode, up
to 400 Kbit/s in the Fast-mode, or up to 3.4 Mbit/s in
the High-speed mode.

 On-chip filtering (50 ns) rejects spikes on the bus data
line to preserve data integrity.

 The number of ICs that can be connected to the same
bus segment is limited only by the maximum bus
capacitive loading of 400 pF.

I2C terminology:

 Transmitter- This is the device which is been used to
transmits data to the bus.

 Receiver- This is the device that receives data from
the bus.

 Master- This is the device that generates clock, starts
communication, sends I2C commands
and stops communication.

 Slave- This is the device that listens to the bus and is
addressed by the master.

 Multi-master- I2C can have more than one master
and each can send commands.

 Arbitration- A process to determine which of the
masters on the bus can use it when more masters need
to use the bus.

 Synchronization- A process to synchronize clocks of
two or more devices.

Serial Data Transfer:

 For each clock pulse one bit of data is transferred.
Then, the SDA signal can only change when the SCL
signal is low – when the clock is high the data should
be stable.

Fig.2 Serial Data Transfer

 Each I2C command initiated by master device starts
with a START condition and ends with a STOP
condition.

 For both conditions SCL has to be high. A high to low
transition of SDA is considered as START and a low
to high as STOP.

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 2, October 2014

 All Rights Reserved © 2014 IJARTET 59

 I2C is a synchronous protocol, and hence, SCL is
used to synchronize all the devices and the data
transfer together.

Fig. 3 Start and Stop Conditions

 After the Start condition the bus is considered as
busy and can be used by another master only after a Stop
condition is detected. After the Start condition the master
can generate a repeated Start. This is equivalent to a normal
Start and is usually followed by the slave I2C address.
Microcontrollers that have dedicated I2C hardware can
easily detect bus changes and behave also as I2C slave
devices. However, if the I2C communication is implemented
in software, the bus signals must be sampled at least two
times per clock cycle in order to detect necessary changes.

I2C Data Transfer:

Fig4: I2C Data Transfer

Data on the I2C bus is transferred in 8-bit packets
(bytes). There is no limitation on the number of bytes,
however, each byte must be followed by an Acknowledge
bit. This bit signals whether the device is ready to proceed
with the next byte. For all data bits including the

Acknowledge bit, the master must generate clock pulses. If
the slave device does not acknowledge transfer this means
that there is no more data or the device is not ready for the
transfer yet. The master device must either generate Stop or
Repeated Start condition.

Fig.5 Data Output Transfer

Synchronization:
 Each master must generate its own clock signal and
the data can change only when the clock is low. For
successful bus arbitration a synchronized clock is needed.
Once a master pulls the clock low it stays low until all
masters put the clock into high state. Similarly, the clock is
in the high state until the first master pulls it low. This way
by observing the SCL signal, master devices can
synchronize their clocks.

Arbitration:

 For normal data transfer on the I2C bus only one
master can be active. If for some reason two masters initiate
I2C command at the same time, the arbitration procedure
determines which master wins and can continue with the
command. Arbitration is performed on the SDA signal while
the SCL signal is high.

 Each master checks if the SDA signal on the bus
corresponds to the generated SDA signal. If the SDA signal
on the bus is low but it should be high, then this master has
lost arbitration. Master I2C device that has lost arbitration
can generate SCL pulses until the byte ends and must then
release the bus and go into slave mode. The arbitration
procedure can continue until all the data is transferred. This
means that in multi-master system each I2C master must
monitor the I2C bus for collisions and act accordingly.
Clock Synchronization and Handshaking:

 Slave devices that need some time to process
received byte or are not ready yet to send the next byte can
pull the clock low to signal to the master that it should wait.
Once the clock is released the master can proceed with the
next byte.

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 2, October 2014

 All Rights Reserved © 2014 IJARTET 60

I2C Bus Transaction:

 Alright, now that we are familiar with the I2C bus
interface, let’s look into how the data transfer actually takes
place through that interface. I2C supports unidirectional as
well as bidirectional data transfer as mentioned below.

Acknowledge Scheme:

As mentioned earlier, I2C transfers 8 bits (1 byte)
of data at a time. After the transfer of each byte is complete,
the receiver must acknowledge it. To acknowledge, the
receiver sends an ACK bit back to the transmitter.

 The transmitter is the one, (could be
either Master or Slave) transmits 1 byte of data
(MSB first) to the receiver during 8 clock pulses of
SCL, after which it releases the SDA line i.e. the
SDA line becomes HIGH for the ACK clock pulse.

 The receiver which is the one which (could be
either Master or Slave, it depends) is obliged to
generate an acknowledge after each byte sent by the
transmitter by pulling the SDA line LOW for the
ACK clock pulse (9th clock pulse) of SCL.

 So overall, there are 9 SCL clock pulses required to
transmit a byte of data. This is shown in the diagram below
with the assumption that Masteries’ the transmitter.
Case 1: Slave is at the receiver’s end Even in this case, there
are two possible cases:

 Case 1a:

 The Slave-receiver which does not
acknowledge the Slave address. In that case, it simply
leaves the SDA line HIGH. Now the Master-
transmitter either generates a Stop sequence or
attempts a repeated Start sequence.

 Case1b:

 The Slave-receiver acknowledges only
the Slave address, but after some time it is unable to
receive any data and leaves the SDA line HIGH
during the ACK pulse. Even in this case, usage of
the Master-transmitter does the same – either generate
a Stop sequence, or attempt a repeated Start sequence.

Case 2: Master is at the receiver’s end

 Case 2a:

 In this case, the Master is the one
generating ACK, as well as responsible for generating
Start/Stop sequence. This carries over for the data
transmission.

 Case 2b:

In this case, in order to signal
 the Slave-transmitter the end of data,
 the Master-receiver does NOT generate any ACK
on the last byte clocked out of the Slave-transmitter.

 In this case, the Slave-transmitter must let go of
the SDA line to allow the Master to generate a Stop
condition.

Master slave communication:

Each slave device on the bus should have a unique
7-bit address. The communication starts with the Start
condition, followed by the 7-bit slave address and the data
direction bit. If this bit is 0 then the master will write to the
slave device. Otherwise, if the data direction bit is 1, the
master will read from slave device. After the slave address
and the data direction is sent, the master can continue with
reading or writing. The communication is ended with the
Stop condition which also signals that the I2C bus is free.
If the master only writes to the slave device then the data
transfer direction is not changed.

Fig. 5 Master and Slave Condition
If the master only needs to read from the slave

device then it simply sends the I2C address with the R/W bit
set to read. After this the master device starts reading the
data. Sometimes the master needs to write some data and
then read from the slave device. In such cases it must first
write to the slave device, change the data transfer direction
and then read the device. This means sending the I2C
address with the R/W bit set to write and then sending some
additional data like register address. After writing is finished
the master device generates repeated start condition and

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 2, October 2014

 All Rights Reserved © 2014 IJARTET 61

sends the I2C address with the R/W bit set to read. After this
the data transfer direction is changed and the master device
starts reading the data.

Fig. 6 Bit address for Master-Slave

 A slave address may contain a fixed and a

programmable part. Some slave devices have few bits of the
I2C address dependent on the level of address pins. This way
it is possible to have on the same I2C bus more than one I2C
device with the same fixed part of I2C address.

Fig.7 Slave Address

The allocation of I2C addresses is administered by

the I2C bus committee which takes care for the allocations.
Two groups of 8 I2C addresses are reserved for future uses
and one address is used for 10-bit I2C addressing. The
general call address is used to address all devices on the
slave bus. If any slave device doesn’t need to respond to
such call or general call is not supported by the slave device,
the call must be ignored. If the device supports general call
and wants to receive the data it must acknowledge the
address and read the data as a slave receiver.

Table I
Slave address

Start Byte:

 If microcontroller has I2C hardware and the
microcontroller acts as a slave then the software needs to do
nothing to check the bus state. The I2C hardware will detect
Start condition, receive the I2C address and interrupt the
software if necessary.

 However, if the I2C interface is implemented by the
software, the microcontroller has to sample SDA line at least
twice per clock pulse in order to detect changes. To simplify
detection of I2C commands on the bus in such cases, a
special I2C address called Start byte is used. This
combination holds the SDA line low for 7 clock pulses and
allows simple detection of active I2C bus with lower
sampling frequency.

Fig. 8 Start Byte Address

III. SOFTWARE ARCHITECTURE

 Each EFM32 has enabled I2C address match
interrupt and Real Time Counter (RTC) interrupt. Both these
interrupts are capable of waking up the EFM32 from Deep
Sleep mode (EM2), hence the idle state current consumption
is extremely low.

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 2, October 2014

 All Rights Reserved © 2014 IJARTET 62

Fig. 9 Software Architecture of I2C

 The I2C is continuously monitoring the I2C line. If
a start condition followed by the I2Cs defined address, an
address match interrupt is issued and data is received until a
stop condition is detected. The Real Time Counter (RTC) is
set to wake up the EFM32 regularly. If a reception is not in
progress at the time of wake-up, a master transmission is
initiated. The address match interrupt is disabled during the
transmission and re-enabled afterwards.

IV. CONCLUSION
 With the heights of the technology autonomous car
is no more a myth. It’s a reality! We would like to present
that there must be further developments in this technology to
make autonomous car more common all over the world. This
can be happened by making the autonomous easy to operate
for the user and the designers should concentrate more in
producing autonomous cars, which should not cost a lot,
they should in the vicinity of customers’ budget. With this
type of vehicles there will be great advantages in the coming
feature. Due to I2C technique, accident free driving is
possible and fuel savage is also made possible by the
technique, which will make the car to travel through shortest
path. In the near future, autonomous car become more
common all over the world. Indian efforts in the embedded
technology can assure that these autonomous cars will
become cheaper and may evolve with many more

advantages. So that we could find ourselves using these
autonomous cars in the near feature.

ACKNOWLEDGEMENT

 The authors would have like to thank the reviewers
for their useful and constructive comments.

REFERENCES
[1]. Arvind Sahu, Ravi Shankar Mishra, Puran Gour, “Design and

Interfacing of High speed model of FPGAS using I2C” IEEE
2010.

[2]. Shoaib.Shah Sobhan, Sudipta. Das and Iqbalur.Rahman,
“Implementation of I2C using System Verilog and FPGA”,
ICAEPE’2011.

[3]. P.Venkateswaran, A. Saynal, S. Das, S.K Proc. Research in
Computing Science: Special Issues – Advances in Computer
Science &Eng., ISSN 1870 – 406, pub .National Polytechnic
Institute, Mexico, Vol.23, pp 191 -198 , Nov. 21-24,2006.

[4]. Xavier Righetti Xavier Righetti “Proposition of a Modular I2C-
Based Wearable Architecture”IEEE-2010.

[5]. Jan O. Borchers, Wolfgang Samminger, Max M¨uhlh¨auser
“Personal Orchestra: Conducting Audio/Video Music
Recordings” IEEE-2009.

[6]. A.R.M. Khan, A.P.Thakare, S.M.Gulhane “FPGA-Based Design
of Controller for Sound Fetching from Codec Using Altera
DE2 Board” International Journal of Scientific & Engineering
Research.

[7]. A.K. Oudjida, M.L. Berrandjia, R. Tiar, A. Liacha, K.Tahraou
„FPGA Implementation of I2C & SPI Protocols”a Comparative
Study IEEE 2009.

[8]. J.M .Irazabel & S.Blozis, Philips Semiconductors, “I2CManual,
Application Note, ref. AN10216-0” March 24, 2012.

[9]. F. Leens, “An Introduction to I2C and SPI Protocols,” IEEE
Instrumentation & Measurement Magazine, pp. 8-13,
February 2009.

[10]. L. Bacciarelli et al, “Design, Testing and Prototyping of a
Software Programmable I2C/SPI IP on AMBA Bus,”
Conference on Ph.D. Research in Microelectronics and
Electronics (PRIME'2006), pp. 373-376, ISBN: 1-4244-0157-7,
Ortanto, Italy, June 2006.

