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Abstract: The diminished-one modulo 2n+1 addition is an important arithmetic operation for a high-performance residue 
number system. In this paper, we propose a new circular-carry-selection (CCS) technique for modulo 2n+1 addition in the 
diminshed-one number domain. The architecture design of CCS is technique for modulo 2n+1 addition in the diminished-
one number domain. The architecture design of CCS modular adder is simple and regular for various bit-width inputs. Low 
power static and dynamic adder technique is used for actual VLSI implementation; the proposed modular adder can 
demonstrate its superiority of savings up to 39.5% in Areax Time and 46.3% in Timex Power performances over those of 
the previous existing solutions under 180-nm CMOS technology. Finally, the chip area and the clock rate of CCS 
diminished-one modulo 216+1 adder are 26746µm2 and 476MHz, respectively. 
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I. INTRODUCTION 

Residue number system (RNS) is a non-weighted 
number system which exhibits a parallel carry-free 
arithmetic feature in digital signal processing (DSP). RNS is 
based on a - moduli set (P1,P2,.,.,PN) where all 
moduli  Pi are pair-wise relatively prime. The binary number 
X  can be converted into a residue representation 
(x1,x2.,.,xN) by forward conversion  where xi = X modulo 
Pi (denoted by  <X> Pi), In RNS, the arithmetic operation of 
X and Y is defined by zi = <xi◊yi>Pi for i=1,2.,.,N where ◊ 
indicates addition, subtraction or multiplication ,For 
example, assume two 5-bit binary numbers X= 1310 = 
011012 and y= 1710=100012 For 3-moduli set  (P1,P2,P3) = 
(3,5,7) we can obtain the residue representations X = (1,3,6) 
and Y = (2,2,3) Compared with binary number system, the 
residue number in each modular channel has the smaller bit-
width which is only 2- or 3-bit wide. An RNS addition of X 
and Y is given as follows: 
  

(z1,z2,z3) = (<1+2>3,<3+2>5,<6+3>7) = (0,0,2) 
 

The result (0,0,2) is the residue representation of 
the sum value x=1310 .It can be found that the computations 
of  z1,z2, and z3 are independently obtained by three 
modular additions in parallel. This indicates the carry-free 
feature of the residue arithmetic. Many moduli sets such as 
(2n-1,2n,2n+1) (2n-1,2n,2n+1,22n+1) and (2n-1,2n,2n+1,  
 

 
 
22n+1+1) etc, are frequently utilized for designing successful 
RNS-based DSP applications. Among these moduli sets, the 
arithmetic in modulo 2n-1 type or 2n type channel only 
handles bit operands and the corresponding modulo 
operation is easy to design, On the contrary the arithmetic in 
modulo 22n+1 type channel computes (n+1) bit operands and 
its modulo operation is more complex to implement, such 
that it mainly dominates the performance of the whole RNS 
system in terms of area, delay and power. Therefore, the 
2n+1 type modulus is the significant and complicated 
modular element in many moduli sets. In this paper we focus 
on the design subject of an efficient modulo 2n+1 addition. 
Given two (n+1) bit inputs A and B in the range [0,2n] the 
modulo 2n+1 addition is defined by <A+B>2n+1. The 
diminished-one number arithmetic was adopted to design an 
efficient modulo 2n+1 adder. For a diminished-one modulo 
2n+1 adder the inputs A and B are decreased by one to 
obtain diminished-one data A* = A -1 and B* =B-1 which 
have n-bit width. Therefore, the diminished –one modulo 
2n+1 addition can be designed by n-bit adder and modulo 
function. This leads to the resulting modular adder be 
suitable for constructing a high-speed RNS addition. Several 
hardware designs of diminished -one modulo 2n+1 adder. 
Although these modular adder architectures are fast 
especially for the fastest parallel-prefix modulo 2n+1 adder 
their circuit costs are sill heavy. The latest design is the 
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select-prefix modulo 2n+1 adder exhibits an improved 
performance in the area-delay space. 

 In this paper, a new circular-carry-selection (CCS) 
technique is presented to design an efficient diminished-one 
modulo 2n+1 adder. The proposed CCS modular adder 
simply consists of dual-sum carry look-ahead (DS-CLA) 
adder, circular-carry generator (CCG) and multiplexer 
(MUX). The DS-CLA adder is designed to generate two 
different sums in parallel. The carry-out bit computed by 
CCG is then used to circularly control the MUX for 
obtaining the correct modulo result. Based on UMC 180-nm 
CMOS design kit, the experimental results illustrate that the 
proposed CCS modular adder has reduced both area- time 
(AT) and time-power (TP) products. 

 The rest of this paper is organized as follows. In 
Section II, the architecture design of the proposed CCS 
modular adder is presented.  Section III provides the 
performance comparison with the previous works and shows 
an efficient VLSI implementation for CCS diminished-one 
modulo 216+1 adder. The conclusion is made in section IV. 

II. PROPOSED CCS DIMINISHED-ONE MODULO ADDER 

 Assume that two n-bit diminished-one operands are 
A* = A -1 = a*n-1 . . . a*0 and B* =B-1 = b*n-1. . . b*0. 
The sum S*=s*n-1. . . s*0 derived by performing modulo 
2n+1 addition of  A* and B* can be changed into the un 
complicated function with performing modulo 2n addition as 
the following expression: 
 
S*= < A*+ B*+cn-1>2n                                                      (1) 
 
Where cn-1 is regarded as an original carry-out bit of  (A*+ 
B*). Denote the carry generate term and the carry propagate  
term as  g*i = a*i • b* i and p*i = a*i % b*i where   stands 
for XOR function. According to CLA function. The carry 
term of c*i  is derived by c*i = g*i  + 

k  g*j +  c*-1 k for    i = 
0,….,n-1, where c*-1 is the carry-in bit. Based on CCS 
technique, we set c*-1= cn-1. The Boolean function of each 
sum bit in (1) can be expressed as follows: 

 
 
 
In (4), we can easily design a DS-CLA adder to produce  
two sums  si*,1 and si*,0 since they have the same  term  

i
*
-1 +  k

*) i
*)  i

* .. In other words, 
they can share the circuit from the view point of hardware 
design. At the same time, cn-1 generated by the CLA 
function of (3) is circularly used to control MUX for getting 
the correct outputs si*,s. The block diagram of CCS 
diminished-one modulo 2n+1 adder is shown in Fig. 1, 
which is simple and regular. For the sake of clarity, Fig. 2 
shows the detailed logic design for CCS diminished-one 
modulo 2n+1 adder. Next, in order to speed up the CCS 
modular adder for the large dimension of n we partition the 
n-bit CCS modular adder into m r – bit CCS addition blocks 
and a fast CCG where n = m x r Fig. 3 illustrates the general 
( m x r) – bit CCS modular adder. 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 Block diagram of CCS diminished-one modulo adder 
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Fig. 2 Logic circuit of CCS diminished-one modulo24+1 adder 
 

Both input data are divided into   block inputs: A* = 
{A*

m-1 . . . . A*
0} and B* = { B*

m-1. . . B*
0 where Ai* = a*

(t+1)r-1. . 
. .a*

tr+1a*
tr  and  Bi

* = b*
(t+1)r-1. . . .b*

tr+1b*
tr for  t = 0,. . . .(m-1). 

The block sum s*
t = s*

 (t+1)r-1. . . . s*
tr+1 s*

tr is derived by A*
t + 

B*
t + K*

t-1 where K*
t-1 represents  the carry-out bit of the  (t-

1)th  addition  block. In each 4 bit CCS addition block, the  
DS-CLA adder generates two block sums  s*

t,0 = s*
t for K*

t-1 
= 0 and s*

t,1 = s*
t for K*

t-1 = 1 in parallel. Likeeise , the carry 
–out bit K*

t-1  is used to select the correct block sum. When t 
= 0 K*

-1 is viewed as the carry-in input of the 
0th addition block and we can set K*

-1 = cn-1  

 
Fig. 3 The (m x r) partitioned CCS modular adder 

b asked on CCS technique. Each carry-out signal K*t-1 for t 
= 1. . . M-1 can be generated by CCG as follows: 

 
 

In (5), the block generate term G*t = g*tr+(r-1) + 
*
k) *

j and the block propagate 

term P*t = *
k are provided by the tth CCS 

addition block. Besides, according to the expressions of G*i  
and  P*i  the original carry-out bit  cn-1 in (3) can be also 
produced by CCG as follows: 
 

n-1 = *
m-1 + *

i) *
j                                    (6) 

 
After comparing (5) and (6), the carry signals of  

K*t-1,1 and  K*t-1,0 can be extracted from the Boolean 
function of  computing the carry-out bit cn-1 simultaneously. 
By using MUX for selection, the carry signal K*t-1 in (5) is 
generated quickly. Fig. 6 depicts the CCG logic circuit for 
the 4 x 4 partitioned CCS modular adder.  

III. STATIC AND DYNAMIC RIPPLE CARRY ADDER 

         The most basic and intuitive BFA is an SRC adder. 
This type of adder has the benefits of simplicity and a 
synchronicity. A synchronicity means that the output of the 
adder can be accessed at any point during a clock cycle. This 
allows the adder to be used in two main styles of processors:  
1) those that read/ calculates data on the rising clock edge 
and write data on falling clock edge and 2) those that read/ 
calculate data during one or more full clock cycles and write 
data during one or more subsequent clock cycles. AOI ( 
And- Or-Invert) logic is a technique of using equivalent 
Boolean logic expressions to reduce the number of gates 
required for a particular expressions. This, in turn, reduces 
capacitance and consequently propagation times. 
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Fig. 4.1 bit static Ripple carry adder 

      The DRC adder is an advanced version of the 
SRC. Utilizing a clock allows the adder to take advantage of 
a technique known as recharging.  This involves the 
charging the sum and carry bits to an intermediate value 
(usually VDD/ 2 ). This reduces the rise and fall time when 
logic low or high is computed. The downside to this 
approach, however, is that the adder result is only available 
when the clock signal is high. Consequently, a latch is 
generally used to hold the data for the remainder of the clock 
cycle. Power consumption of the adder is also increased due 
to the recharging.   

 
Fig. 5 1 bit dynamic Ripple carry adder 

 
       A processor designer has a few choices when 
choosing a clock to work with this type of adder. Since the 
result can only be calculated when the clock is high, the 
clock period must be at least twice as long as the adder 
propagation time. Depending upon the needs of the 
processor, anywhere from (1) to n number of bits could be 
computed in one clock cycle. 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6 Logic design of CCG for 4 x 4 partitioned CCS modular adder 

We compare the CCS diminished-one modulo  2n + 
1 adder against two previous design of parallel- prefix 
modular adder and select-prefix modular adder, which are 
regarded as the faster and the most AT efficient designs 
among the existing solutions. In order to make an accurate 
comparison, we use UMC 180-nm design kit with cadence’s 
PKS and Silicon Ensemble tools to implement the designs of 
and our CCS modular adder. The above modular adder 
implementations include a real-zero indicator which is 
referred to deal with special zero representation in 
diminished-one number domain.  

Table I shows the comparison in terms of area, 
delay time, power consumption, AT and TP products with 
various dimensions of n =, 12, 16, 24, 32, 48 and 64, which 
are commonly used for RNS- based DSP applications. Two 
designs of CCS and select-prefix modular adders are realized 
under the block portioning of m x n for the optimal 
performance. The shaded parts in the table indicate the best 
results for the specific dimension of n. we can see that, for n 
> 8 the CCS modular adder has less AT and TP products. 
Fig. 7 illustrates the AT and TP gains of the proposed CCS 
modular adder against the designs. From Fig. 7, our 
proposed CCS modular adder is up to the AT and TP gains 
of 39.5% and 39.6% more efficient than the parallel-prefix 
modular adder while the gains of 34.6% and 46.3% than the 
select-prefix modular adder, respectively. Overall, our 
approach can achieve the average AT gains of 18.8% and 
20.6%, and the average TP gains of 21.2% and 26.0%. This 
leads CCS modular adder to be profitable for many real 
applications when requiring a good compromise in area, 
delay and power. Finally, we implement the chip of CCS 
diminished-one modulo 216 + 1 adder and the corresponding 
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layout is shown in Fig.6. The chip area is about responding 
layout is shown in Fig. 7. The chip area is about 26746 µm2. 
Considering the parasitic effects of wire loading and I/O 
pad, the power consumption of the chip is measured at 11.2 
mW under a 1.8-V power supply. The working frequency 
can achieve 476 MHz. 

 
TABLE 1  

COMPARISON OF THE SYNTHESIZED ADDERS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
              Fig. 7 Chip layout for CCS diminished-one modulo 24+1 adder 

IV.  CONCLUSION 

       A new CCS diminished-one modulo 2n + 1 adder 
has been introduced and developed to derive the most 
compromising design in terms of area, delay and power. For 
a large bit- width requirement, our CCS modular adder is 
realized by the combination of CCS addition blocks, CCG 
and MUX to lead into the simple and regular circuit 
structure. Based on static UMC 180-nm CMOS technology, 
the VLSI implementation of CCS modular adder indeed has 
better area-delay and delay-power performances over those 
of the previous designs. 
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